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momenta of the binomial, the Lévy and the Cauchy distributions are calculated in order to fulfill the quality gate.

Key–Words: Quality gate, diffusion, finite momenta, variance theorem

1 Introduction
The investigation of the structure of complex systems
and their dynamical properties are a part of the main
topics in science in our days. Such frameworks / pat-
terns with movements of their basic ingredients are
characterised by

• a large density of elementary units,

• strong interactions between these units,

• a non-predictable or anomalous evolution in the
course of time.

The study of all these properties play an important
role in exact and live sciences where glasses, liquid
crystals, polymers, proteins, biopolymers, organisms,
ecosystems and economy are included.

In [1] the relationship between propagation pro-
cesses in such complex systems and the statistical mo-
menta are discussed. The physical examples of such
transport are the diffusion and the heat conduction.
Motivated by this, momenta in infinite boundaries are
introduced and defined. A second not less important
result in [1] is the formulation of the quality gate, that
in order to guarantee the quality of results, two or

three different and independent ways have to be pre-
sented. This as background, the momentum generat-
ing function was introduced, too. All these features
are applied to different forms of the Lévy distribution
and the Cauchy distribution, too. Due to the fact of in-
finite boundaries, these results can lead to misunder-
standings in their interpretation, as discussed in [1].

Furthermore the question was answered, what
happed if the momenta are applied to a Fourier convo-
lution, which is the general solution of a linear partial
differential equation. Starting from〈

xi, f(x) ∗ g(x)
〉

=∫ ∞
−∞

xi
∫ ∞
−∞

f(x− ξ) g(ξ) dξ dx = (1)∫ ∞
−∞

g(ξ)

∫ ∞
−∞

xi f(x− ξ) dx dξ,

by substitution x − ξ = y ⇔ dx = dy and the
application of the binomial theorem follows:〈

xi, f(x) ∗ g(x)
〉

=∫ ∞
−∞

g(ξ)

∫ ∞
−∞

i∑
j=0

(
i

j

)
yj ξi−j f(y) dy dξ =
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i∑
j=0

(
i

j

) ∫ ∞
−∞

g(ξ) ξi−j
∫ ∞
−∞

f(y) yj dy dξ =

i∑
j=0

(
i

j

) 〈
xi−j , g(x)

〉 〈
xj , f(x)

〉
. (2)

For the first three characteristic momenta results

µ (f(x) ∗ g(x)) =

µ (f(x)) + µ (g(x)) , (3)
σ2 (f(x) ∗ g(x)) =

σ2 (f(x)) + σ2 (g(x)) , (4)
σ3 (f(x) ∗ g(x)) =

σ3 (f(x)) + σ3 (g(x)) . (5)

For higher momenta also such kind of relations can be
derived

σ4 (f(x) ∗ g(x)) = (6)
σ4 (f(x)) + 6σ2 (f(x)) σ2 (g(x)) + σ4 (g(x))

σ5 (f(x) ∗ g(x)) =

σ5 (f(x)) + 10σ3 (f(x)) σ2 (g(x)) +

10σ2 (f(x)) σ3 (g(x)) + σ5 (g(x)) (7)

Here, the basic definitions of the momentum with in-
finite boundaries of the forms

mi =

∫ ∞
−∞

xi F (x) dx =
〈
xi, F (x)

〉
(8)

and

µi =

∫ ∞
−∞

(
x− m1

m0

)i F (x)

m0
dx (9)

are used. The second expression indicates the i-th
central momentum, F (x) a distribution function, m1

and m0 represent the first momentum and the norm
respectively.

A second chapter of this publication motivates
the introduction of momenta with finite boundaries
and the formulation of the variance theorem with fi-
nite boundaries, which are defined and discussed in
the third part. A fourth chapter investigates the two
forms of Lévy’s distribution and the Cauchy distribu-
tion with respect to the momenta in finite boundaries
on two different ways in order to fulfill the quality
gate.

At least a conclusion summarises the results here.

2 Motivating Examples for the Vari-
ance Theorem for Finite Bound-
aries

This section is dedicated to show the necessity of
an extension of the momentum definition from infi-

nite boundaries to finite ones. A first example com-
ming from heat conduction shows, that the interpre-
tation of the results for infinite boundaries gives mis-
sunderstandings. A second sample is dedicated to a
continuous binomial distribution and motivates finite
boundaries here. A last example discusses the case
of anomalous diffusion and shows, that with infinite
boundaries momenta do not exist.

These motivations go along with the results from
[1] that for two versions of the Lévy distribution
and the Cauchy distribution the momenta in infinite
boundaries do not exsit.

2.1 A Heat Conduction Problem
Consider the heat conduction equation of the form

∂T (t, x)

∂t
− a∂

2T (t, x)

∂x2
=
s(t, x)

%masscp
, (10)

where T (t, x) describes the temperatur difference in
[K], a the heat conductivity. s(t, x) represents a con-
trol quantity in order to take outside influences into
account, which are for example sources, sinks, initial
conditions, boundary conditions etc. Furthermore ini-
tial conditions are given by

T (0, x) = κx (11)

with some constant κ.
Applying now the Fourier convolution∫ ∞

−∞
f (x− ξ) δ(ξ)dξ =

∫ ∞
−∞

f (ξ) δ(x−ξ)dξ = f(x)

(12)
to the propagator1 of the heat equation, the result is

∫ ∞
−∞

exp
(
− ξ2

4 a t

)
√

4π a t
κ (x− ξ)κdξ = κx.

This means, that a linear gradient of temperature in in-
finite ranges is a stable stationary solution of the heat
equation (10) for s(t, x) = 0. This solution also is
a stationary solution in finite ranges with a constant
heating well at one side of the wall and a constant
cooling well at the other side of the wall [2]. Without
such wells the integration limits must be set to zero at
the position of the calorimetric temperature. Then, by

1The authors understand by this a fundamental solution, start-
ing by Dirac’s delta function.
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these results for a homogeneous wall turns out∫ d
2

− d
2

exp
(
− ξ2

4 a t

)
√

4π a t
κ (x− ξ) dξ =

κ
√
a t√
π

(
exp

(
−(2x+ d)2

16 a t

)
− (13)

exp

(
−(2x− d)2

16 a t

))
+

κx

2

(
erf

(
2x+ d√

16 a t

)
− erf

(
2x− d√

16 a t

))
.

The so–called error function erf(x) is related to Eu-
ler’s incomplete gamma function, which can be cal-
culated by the power series of the confluent hyperge-
ometric function [3]. This example shows, that it is
necessary to expand the definition of momenta and the
formulation of the variance theorem to the situation
of finite boundaries. This becomes more evident if
theoretical results are compared to experimental data,
which are available in a measurement window. This is
discussed in a forthcomming paper in more detail.

2.2 The Contiuous Binomial Distribution
In order to get a continuous function, interpolating the
binomial distribution of the formulation

T (x, t) = (14)

1

2 v∆t

(
p

p+ q

) x+v t
2 v∆t

(
q

p+ q

) v t−x
2 v∆t

(
t

∆t
x+ v t
2 v∆t

)
=

1

2 v∆t

p
x+v t
2 v∆t q

v t−x
2 v∆t

(p+ q)
t

∆t

(
t

∆t

)
!(

x+ v t
2 v∆t

)
!
(
v t−x
2 v∆t

)
!
.

the use of n! ≈
(
n
e

)n√
2π n, which is Stirling’s for-

mula [4], approximates the factorial. This leads to the
following term, where k = (p+ u) n is substituted to
get a good approximation of the binomial distribution
for n p � 1 and p ≥ q and p+ q = 1:

1

n
log

(
pk qn−k

(
n
k

) √
2π n (p+ u) (q − u)

)
≈ log

((
p

p+ u

)p+u (
q

q − u

)q−u)
. (15)

This result causes a definition range −p ≤ u ≤ q for
the approximated continuous binomial distribution

f(u) =

p(p+u)n q(q−u)n

(
n

(p+ u)n

)
≈ (16)((

p
p+u

)p+u (
q

q−u

)q−u)n
√

2π n (p+ u) (q − u)
.

It is easy to see, that the definition range corresponds
to 0 ≤ k ≤ n for the discrete binomial distribution.
This approximation is valid without an additional con-
dition like a constant a = v2 ∆t

2 for equation

T (x, t) = (17)(
t

∆t
x+ v t
2 v∆t

)
2 v∆t 2

t
∆t

≈
exp

(
− x2

2 v2 ∆t t

)
2 v∆t

√
π
2

t
∆t

=
exp

(
− x2

4 a t

)
√

4π a t
,

solving the difference equation of a random walk with
equal propabilities [1]

T (t, x) = (18)
1

2
T (x− v∆t, t− ∆t) +

1

2
T (x+ v∆t, t−∆t) .

2.3 Anomalous Diffusion
In [1] was shown, that for a classical Brownian motion
the mean squared displacement〈

x2, f(t, x)
〉

= σ2 = 2 a t (19)

grows linearly in time in absence of an external bias.
In the continuum limit, this kind of motion can be de-
scribed by the diffusion equation

∂P (t, x)

∂t
= a

∂2P (t, x)

∂x2
, (20)

where P (t, x) is the probability density function. As-
suming the initial condition P (0, x) = δ(x) with δ(x)
as Dirac’s delta function, the fundamental solution be-
comes [16]

P (t, x) =
exp

(
− x2

4 a t

)
√

4π a t
. (21)

The diffusion constant fulfills the Einstein–Stokes re-
lation a = kBT

mη , where kBT is the Boltzmann energy
at temperature T, m the mass of the test particle and η
the friction coefficient. Thus, a relation between mi-
croscopic and macroscopic quantities was found and
used to determine the Avogadro number (see [6]).

In various experiments, deviations from this lin-
ear behaviour (19) are observed (see [7, 8, 9, 10, 11,
12, 13]), which can be summarized by the application
of a power law form [14, 15, 5]:〈

x2, f(x, t)
〉

= σ2 = 2 aξ t
ξ. (22)

The related differential equations, owning such kind
of mean squared displacement, are not usual diffusion
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equations. They can be constructed by replacing the
usual partial derivatives by fractional ones like

∂α

∂tα
P (t, x) − ∂α

∂tα
P (0, x) + aR−βx (P (t, x)) = 0. (23)

Here,

∂α

∂tα
f(t) = C

hDαt (f(t)) = (24)(
d·
dt

)n 1

Γ(n− α)

∫ t

h
(t− τ)n−α−1 f(τ) dτ.

represents the Caputo derivative for n − 1 ≤ α ≤ n
[17], and

∂β

∂xβ
f(x) = −R−βx (f(x)) =

−
2β Γ

(
β+1

2

)
√
π Γ
(
−β

2

) ∞∫
−∞

f(ξ)

|x− ξ|β+1
dξ (25)

is the Riesz operator with 0 < β < 2 [18].
The solution of this fractional diffusion equation can
be found by [18]

P (t, x) = (26)

H1,2
3,2

[
2β a tα

|x|β

∣∣∣∣ {{0, 1}, { 12 , β2 }} | {{0, β2 }}
{{0, 1}} | {{0, α}}

]
√
π |x|

=

H2,1
2,3

[
|x|β

2β a tα

∣∣∣∣ {{1, 1}} | {{1, α}}
{{ 12 ,

β
2 }, {1, 1}} | {{1, β2 }}

]
√
π |x|

with the momenta in infinite boundaries

mi = (27)

(1 + (−1))
i

2i t
α i
β a

i
β Γ
(
1+i
2

)
Γ
(
− i
β

)
Γ
(
i+β
β

)
√
π β Γ

(
− i

2

)
Γ
(

1 + i α
β

) =

(1 + (−1))
i

2i−1 t
α i
β a

i
β Γ
(
1+i
2

)
Γ
(

1− i
β

)
Γ
(
i+β
β

)
√
π Γ
(
1− i

2

)
Γ
(

1 + i α
β

) .

For i → 2, the only way to get a sensible momentum
is β → 2. If β < 2, the second momentum diverges,
for β > 2 and 0 < i < β it becomes zero.

All these examples show, that momenta with fi-
nite boundaries are needed.

3 The Variance Theorem with Finite
Boundaries

In the previous part was shown, that there are at
least two reasons for introducing momenta with finite
boundaries:

• from the continuous binomial distribution was
shown, that the area of definition of this function
has to be restricted due to the square root in the
denominator.

• from the anomalous diffusion and the distribu-
tion function, discussed in [1], finite boundaries
for the momenta have become necessary in order
to get well defined expressions for them.

But there is also a third reason, restricting the defini-
tion of the momenta to finite boundaries. This is com-
paring momenta of mathematical models with mo-
menta of experimental data. The main reason here is,
that the measurements did not run through the whole
space −∞ < x <∞. A more detailed description of
this situation can be found in a forthcomming paper.

The consideration here is started by

Definition 1 Let X be a continous random variable
with the related distribution function F (x) for a ≤
x ≤ b. Otherwise is F (x) = 0. Then is

mi =

∫ b

a
xi F (x) dx =

〈
xi, F (x)

〉
finite (28)

for the i-th momentum and

µi =

∫ b

a

(
x− m1

m0

)i F (x)

m0
dx (29)

for the i-th central momentum.

The characteristic momenta norm n = m0, ex-
pectation value µ = m1

m0
, variance σ2 = m2

m0
− m2

1

m2
0
, and

asymmetry σ3 = m3
m0
−3 m2m1

m2
0

+2
m3

1

m3
0

can be defined
through (28).

With this definition at hand, it is possible to go on
by considering the Fourier convolution of functions,
where g(ξ) is defined in an interval a ≤ ξ ≤ b. Out-
side of it g(ξ) is zero. This leads to∫ b

a
f(x− ξ) g(ξ) dξ =

∫ x−a

x−b
f(u) g(x− u) du (30)

with u = x − ξ. Then is du = −dξ. Calculating
the momenta for such a Fourier convolution, which
is a solution of a linear partial differential equation,
results via the Fubini theorem are

mi =

∫ ∞
−∞

xi
∫ b

a
f(x− ξ) g(ξ) dξ dx

=

∫ b

a

∫ ∞
−∞

xi f(x− ξ) g(ξ) dx dξ. (31)
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Now, the substitution x−ξ = u generates a term f(u)
and leads to finite boundaries of the inner momentum
integral, because also f(u) is zero outside the finite
boundaries a ≤ u ≤ b:

mi =

∫ b

a
g(ξ)

∫ ∞
−∞

(ξ + u)i f(u) dudξ

=

∫ b

a
g(ξ)

∫ b

a
(u+ ξ)i f(u) du dξ. (32)

The binomial theorem for non–negative integer i can
be applied, which discouples the integrals:

mi =

∫ b

a

g(ξ)

∫ b

a

i∑
j=0

(
i

j

)
uj ξi−j f(u) dudξ

=
i∑

j=0

(
i

j

) (∫ b

a

f(u)uj du

) (∫ b

a

g(ξ) ξi−j dξ

)

=
i∑

j=0

(
i

j

) 〈
xj , f(x)

〉 〈
xi−j , g(x)

〉
=

〈
xi, f(x) ∗ g(x)

〉
. (33)

This result is formally identical with the result for infi-
nite boundaries (see equation (36) in [1]). The conse-
quence is to discuss momenta within the ranges of the
measured data only, which will never go to infinity.
The three fundamental relations of non–linear charac-
teristic momenta (3) to (7) stay valid also for any finite
boundaries of the measured data. Now, both the theo-
retical functions and the measured data need the same
boundaries to be compared correctly.

This leads to using the interpolation of the bi-
nomial distribution by Euler’s Gamma function and
the several continuous approximations like (16) for
n p � 0 and −p − 1

n < u < q + 1
n and p + q = 1,

which is not self–similar for all n, in finite boundaries
for the discussion of statistical or diffusion models.
This is done more precisely, than an investigation via
the Gaussian distribution:

T (t, x) =
exp

(
− x2

4 a t

)
√

4π a t
. (34)

4 The Application of the Momenta
and the Variance Theorem for Fi-
nite Boundaries

In order to fulfill the quality gate, introduced in [1],
an adaption of the momentum generating function to
finite boundaries has to be done, too. In order to do
this, the beginning is by

Definition 2 If X is a random variable, then a func-
tion g(x), definied as:

g(t) = E
(
etX
)

=
∞∑
j=0

mjt
j

j!
=

E

 ∞∑
j=0

Xjtj

j!

 =
∞∑
j=1

etxjp(xj) (35)

is called the momentum generating function in the dis-
crete case.
In the continuum is:

g(t) = E
(
etX
)

=

∫ ∞
−∞

etxfX(x)dx.

Taking finite boundaries into account the momentum
generating function can be regarded as

g(t) = E
(
etX
)

=

∫ β

α
etXfX(x)dx

In order to show the application of this definition,
the case of the normal distribution of heat conduction
is considered, which is of the form

T (t, x) =
exp

(
− x2

4 a t

)
√

4π a t
.

The calculation of the momenta in infinite boundaries
can be regarded as

M (m,−∞,∞) =
((−1)m + 1m) a

m
2 t

m
2 Γ
(

1+m
2

)
√
π

,

(36)
from which follows

m = 0 : M(0,−∞,∞) = 1,

m = 1 : M(1,−∞,∞) = 0,

m = 2 : M(2,−∞,∞) = 2 a t,

m = 3 : M(3,−∞,∞) = 0. (37)

Discussing this situation with the momentum generat-
ing function, results

M(m,−∞,∞) =

∂m

∂τm

∫ ∞
−∞

eτ x
exp

(
− x2

4 a t

)
√

4π a t
dx

 = (38)

∂m

∂τm
(
exp

(
a t τ2

))
.

Here, (37) follows by taking the limit τ → 0.

WSEAS TRANSACTIONS on MATHEMATICS Joerg Volkmann, Norbert Suedland, Nail Migranov

E-ISSN: 2224-2880 398 Volume 18, 2019



Now, the situation is considered for finite bound-
aries. In this case, the momentum integral is of the
form

M (m,α, β) =∫ β

α
xm

exp
(
− x2

4 a t

)
√

4π a t
dx =

2−1+ma
m
2 t

m
2

(
Γ
(

1+m
2 , α

2

4 a t

)
− Γ

(
1+m

2 , β
2

4 a t

))
√
π

.

From this is:

m = 0 : (39)

M(0, α, β) =
Γ
(

1
2 ,

α2

4 a t

)
− Γ

(
1
2 ,

β2

4 a t

)
2
√
π

,

m = 1 : (40)

M(1, α, β) =

√
a t
(

exp
(
− α2

4 a t

)
− exp

(
− β2

4 a t

))
√
π

,

m = 2 : (41)

M(2, α, β) =
2 a t

(
Γ
(

3
2 ,

α2

4 a t

)
− Γ

(
3
2 ,

β2

4 a t

))
√
π

,

m = 3 : (42)

M(3, α, β) =
4 a

3
2 t

3
2

(
Γ
(

2, α
2

4 a t

)
− Γ

(
2, β2

4 a t

))
√
π

.

By taking the double of the limits α → −∞, β →∞
for even m of these expressions leads to the results
(37).

In order to fulfill the quality gate, the momen-
tum generating function with finite boundaries is used.
This leads to

M(m,α, β) =

∂m

∂τm

∫ β

α
exp τ x

exp
(
− x2

4 a t

)
√

4π a t
dx

 =

∂m

∂τm

1

2
exp

(
a t τ2

)−Γ
(

1
2 ,

(−α+ 2 a t τ)2

4 a t

)
√
π

+

Γ
(

1
2 ,

(−β+ 2 a t τ)2

4 a t

)
√
π

 .

By taking into accountm = 0, 1, 2, 3, the results from
(39) can be reproduced, and the quality gate is ful-
filled. Determining the double of the limits α→ −∞
and β → ∞ for even m after the differentiation the
same results like those in (37) can be found, and the
quality gate is fulfilled.

4.1 The Lévy-Distribution
For the Lévy distribution [20]

f(x) =

√
σ

2π

exp
(
− σ

2 (x−µ)

)
(x− µ)

3
2

, (43)

now the momenta can be calculated by the momentum
integral, resulting

∫ ∞
µ

xm
√

σ

2π

exp
(
− σ

2 (x−µ)

)
(x− µ)

3
2

dx =

µm
√
σ

2

−2 Γ(1
2 −m) 1F1

(
1
2 −m,

3
2 ,

σ
2µ

)
√
µΓ(−m)

+

√
2 1F1

(
−m, 1

2 ,
σ
2µ

)
√
σ

 .

This leads to the expressions

m0 = n = 1,

m1 = µ− σ,

m2 = µ2 − 2µσ +
σ2

3
,

m3 = µ3 − 3µ2 σ + µσ2 − σ3

15
.

Here can be seen, that the first momentum lies out of
the definition area, which is D = {x|x > µ}.

The second way to get results for the momenta, is
using the momentum generating function. Here, the
integral

√
σ

∫ ∞
µ

exp
(

t x− σ
2(x−µ)

)
(x− µ)

3
2

dx

has to be solved. For the momenta follows:

M(m) = lim
t→0

(
∂m

∂tm
et µ− i

√
2 t σ

)
and

M(0) = lim
t→0

(
et µ− i

√
2 t σ
)

= 1,

M(1) = lim
t→0

(
et µ− i

√
2 t σ µ − i et µ− i

√
2 t σ
√
σ√

2 t

)
,

M(2) = lim
t→0

(
et µ− i

√
2 t σ µ2 − iet µ− i

√
2 t σ
√
σ

2
√

2 t
3
2

−

i
√

2 et µ− i
√
2 t σ µ

√
σ√

t
− et µ− i

√
2 t σ σ

2 t

)
.
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From this it can be seen, that only the norm exsists.
The higher order momenta possess a singularity at
t→ 0 and have no finite values. Here, from the qual-
ity gate’s point of view is following, that these results
are of formal nature and have no meaning. This ex-
ample shows, that the application of the quality gate
is necessary to avoid a misinterpreation of results.

Now, for this kind of Lévy distribution (43), the
momenta with finite boundaries are calculated. To do
this, the expression

M(m,α, β) =

∫ β

α

xm
√

σ

2π

exp
(
− σ

2 (x−µ)

)
(x− µ)

3
2

dx (44)

has to be solved. Using the substitution x − µ =
ζ, dζ = dx and the binomial theorem [4], the result
is:

M(m,α, β) =
m∑
i=0

(
−

2−i µ−i+m σi Γ(1 +m) Γ(1
2 − i,

σ
2α−2µ )

√
π Γ(1 + i) Γ(1− i+m)

+

2−i µ−i+m σi Γ(1 +m) Γ( 1
2 − i,

σ
2β−2µ )

√
π Γ(1 + i) Γ(1− i+m)

)
.

For the first four momenta follows

m = 0 : (45)

M(0, α, β) =
Γ
(

1
2 ,

σ
2(β−µ)

)
√
π

−
Γ
(

1
2 ,

σ
2(α−µ)

)
√
π

,

m = 1 :

M(1, α, β) = (46)
1

2
√
π

(
−σ Γ

(
−1

2
,

σ

2(α− µ)

)
+

σ Γ

(
−1

2
,

σ

2(β − µ)

)
+

2µ

(
Γ

(
1

2
,

σ

2(β − µ)

)
− Γ

(
1

2
,

σ

2(α− µ)

)))
,

m = 2 :

M(2, α, β) = (47)
1

4
√
π

(
−σ2 Γ

(
−3

2
,

σ

2(α− µ)

)
+

σ2 Γ

(
−3

2
,

σ

2(β − µ)

)
+

4µ

(
−σ Γ

(
−1

2
,

σ

2(α− µ)

)
+

σ Γ

(
−1

2
,

σ

2(β − µ)

))
−

4µ2 Γ

(
1

2
,

σ

2(α− µ)

)
+ 4µ2 Γ

(
1

2
,

σ

2(β − µ)

))
,

m = 3 :

M(3, α, β) = (48)
1

8
√
π

(
−σ3 Γ

(
−5

2
,

σ

2(α− µ)

)
+

σ3 Γ

(
−5

2
,

σ

2(β − µ)

)
+

2µ

(
−3σ2 Γ

(
−3

2
,

σ

2(α− µ)

)
+

3σ2 Γ

(
−3

2
,

σ

2(β − µ)

)
+

2µ

(
−3σ Γ

(
−1

2
,

σ

2(α− µ)

)
+

3σ Γ

(
−1

2
,

σ

2(β − µ)

)
−

2µΓ

(
1

2
,

σ

2(α− µ)

)
+ 2µΓ

(
1

2
,

σ

2(β − µ)

))))
The second way to calculate the momenta, is to use the
momentum generating function. Therefore, the inte-
gral

M(m,α, β) =

√
σ

2π

∫ β

α

et x−
σ

2(x−µ)

(x− µ)
3
2

dx,

has to be solved, which in this form becomes quite
difficult. Alternatively, the series representation of the
momentum generating function can be used. Due to
the fact, that the first four momenta are important in
this consideration,

et x = 1 + t x+
t2 x2

2
+
t3 x3

6
+
t4 x4

24
+O(t5 x5)

is used. With this at hand, the momenta result:

M(m,α, β) =

exp
(
− σ

2α−2µ

)
2520
√

2π
· · · (49)[

− 2 t
√
α− µ

√
σ (2520 + 420 t (α+ 5µ− σ) +

28 t2
(
3α2 + 9αµ+ 33µ2 − ασ − 14µσ

)
+

t3
(
15α3 + 279µ3 + α2 (39µ− 3σ)− 185µ2 σ−

27µσ2 − σ3 + α
(
87µ2 − 22µσ + σ2

)))
+

exp

(
− σ

2α− 2µ

)√
2π(

2520 + 2520 t (µ− σ) + 420 t2
(
3µ2 − 6µσ + σ2

)
+

28t3
(
15µ3 − 45µ2σ + 15µσ2 − σ3

)
+

t4
(
105µ4 − 420µ3σ + 210µ2σ2 − 28µσ3 + σ4

))1−
Γ
(

1
2 ,

σ
2α−2µ

)
√
π

]+
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exp
(
− σ

2β−2µ

)
2520
√

2π
· · ·[

− 2 t
√
β − µ

√
σ (2520 + 420 t (β + 5µ− σ) +

28 t2
(
3β2 + 9β µ+ 33µ2 − β σ − 14µσ

)
+

t3
(
15β3 + 279µ3 + β2 (39µ− 3σ)− 185µ2σ−

27µσ2 − σ3 + β
(
87µ2 − 22µσ + σ2

)))
+

exp

(
− σ

2β − 2µ

)
√

2π (2520 + 2520 t (µ− σ) +

420 t2
(
3µ2 − 6µσ + σ2

)
+

28t3
(
15µ3 − 45µ2 σ + 15µσ2 − σ3

)
+

t4
(
105µ4 − 420µ3 σ + 210µ2σ2 − 28µσ3 + σ4

))1−
Γ
(

1
2 ,

σ
2β−2µ

)
√
π

]
For the norm, equation (45) follows from (49) after
t → 0. The first momentum can be found by differ-
entiating (49) once with repect to t and then putting
t→ 0:

M(1, α, β) =√
2

π

(
− exp

(
− σ

2α− 2µ

)√
α− µ+

exp

(
− σ

2β − 2µ

)√
β − µ

)
σ −

(µ− σ) Γ
(

1
2 ,

σ
2α−2µ

)
√
π

+
(µ− σ) Γ

(
1
2 ,

σ
2β−2µ

)
√
π

,

which leads to the same expression as (46).
The second momentum follows from (49) after a

double differentiation with respect to t and after set-
ting t→ 0:

M(2, α, β) =

1

3
√
π

exp

(
− σ

2α− 2µ
− σ

2β − 2µ

)
(√

2σ exp

(
σ

2α− 2µ

)√
β − µ (β + 5µ− σ) +

√
2σ exp

(
σ

2β − 2µ

)√
α− µ (−α− 5µ+ σ)

)
−

exp

(
σ

2α− 2µ
+

σ

2β − 2µ

)(
3µ2 + 6µσ + σ2

)
(

Γ

(
1

2
,

σ

2α− 2µ

)
− Γ

(
1

2
,

σ

2β − 2µ

))
.

Comparing this result with (47) shows the accordance
of both expressions.

At last, the third momentum can be determined
by differentiation of (49) three times with respect to t

and afterwards t→ 0. The result is

M(3, α, β) =

1

15
√
π

exp

(
− σ

2α− 2µ
− σ

2β − 2µ

)
· · ·(

−
√

2σ exp

(
σ

2β − 2µ

)√
α− µ(

3α2 + 9αµ+ 33µ2 − ασ − 14σµ+ σ2
)

+

√
2σ exp

(
σ

2α− 2µ

)√
β − µ(

3β2 + 9βµ+ 33µ2 − βσ − 14σµ+ σ2
))

− exp

(
σ

2α− 2µ
+

σ

2β − 2µ

)
(
15µ3 − 45µ2σ + 15µσ2 − σ3

)(
Γ

(
1

2
,

σ

2α− 2µ

)
− Γ

(
1

2
,

σ

2β − 2µ

))
.

Comparing this result with (48) shows the congruence
of both expressions. It should be mentioned here, that:

M(m,α, β) = lim
t→0

(
∂m

∂ tm

[∫ β

α
etxf(x)dx

])
= lim

t→0

(
∂m

∂ tm

[∫ β

α

∞∑
i=0

(tx)i

i!
f(x)dx

])

= lim
t→0

(∫ β

α

∂m

∂ tm

[ ∞∑
i=0

(tx)i

i!
f(x)

]
dx

)
.

From this follows:

M(0, α, β) =

∫ β

α
f(x)dx,

M(1, α, β) =

∫ β

α
xf(x)dx,

M(2, α, β) =

∫ β

α
x2f(x)dx,

M(3, α, β) =

∫ β

α
x3f(x)dx.

The second Lévy distribution to be considered, is of
the form [21]

L(x) =
σk

Γ(k)

exp
(
− σ

(x−µ)

)
(x− µ)1+k

. (50)

In order to determine the momenta, the integral of the
form

M(m,µ,∞) =

∫ ∞
µ

xm
σk

Γ(k)

exp
(
− σ

(x−µ)

)
(x− µ)1+k

dx
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is to be considered. After the substitution (x − µ) =
ζ, dx = dζ and the application of the binomial theo-
rem results with k > m, σ > 0 and k > 0

M(m,µ,∞) =

µ−k+mσkΓ(−k)Γ(k −m) 1F1(k −m, 1 + k, σµ )

Γ(k)Γ(−m)
+

µm 1F1(−m, 1− k, σ
µ

),

from which follows:

M(0, µ,∞) = 1,

M(1, µ,∞) = µ+
σ

−1 + k
,

M(2, µ,∞) = µ2 +
2µσ

−1 + k
+

σ2

2− 3k + k2
,

M(3, µ,∞) = µ3 +
3µ2σ

−1 + k
+

3µσ2

2− 3k + k2
+

σ3

−6 + 11k − 6k2 + k3
.

Here, the results form ≥ 1 own only formal character
due to the fact, that the condition k > m, k > 0 and
m > 0 does not coincide.

The second way to investigate the Lévy distri-
bution, is to use the momentum generating function.
This leads to

M(m,µ,∞) =

∫ ∞
µ

etx
σk

Γ(k)

exp
(
− σ

(x−µ)

)
(x− µ)1+k

dx

=
2 ik et µ t

k
2 σ

k
2 Kν [k, 2 i

√
t σ]

Γ[k]

where Kν is the modified Bessel function of second
kind, defined, by the differential equation z2y′′+zy′−
(z2 + ν2)y = 0 [22].
For this expression, the non–existence of the momenta
can be seen for m ≥ 1.

In contrast to the calculations above, now the mo-
menta for (50) are determined for finite boundaries. In
order to do this, the integral:

M(m,α, β) =
σk

Γ(k)

∫ β

α
xm

exp
(
− σ

(x−µ)

)
(x − µ)1+k

dx

has to be solved. After a substitution x−µ = ζ, dx =
dζ and the application of the binomial theorem the re-

sult is:

M(m,α, β) =
m∑
i=0

−µi σ−i+m Γ(1 +m) Γ(i+ k −m, σ
α−µ)

Γ(1 + i) Γ(k) Γ(1− i+m)
+

m∑
i=0

µi σ−i+m Γ(1 +m) Γ(i+ k −m, σ
β−µ)

Γ(1 + i) Γ(k) Γ(1− i+m)

From this follows:

m = 0 :

M(0, α, β) =
Γ(k, σ

β−µ)− Γ(k, σ
α−µ)

Γ(k)
, (51)

m = 1 :

M(1, α, β) =

σ
Γ(−1 + k, σ

β−µ) − Γ(−1 + k, σ
α−µ)

Γ(k)
+

µ
Γ(k, σ

β−µ) − Γ(k, σ
α−µ)

Γ(k)
,

m = 2 :

M(2, α, β) = (52)

σ2
Γ(−2 + k, σ

β−µ) − Γ(−2 + k, σ
α−µ)

Γ(k)
+

2µσ
Γ(−1 + k, σ

β−µ) − Γ(−1 + k, σ
α−µ)

Γ(k)
+

µ2
Γ(k, σ

β−µ) − Γ(k, σ
α−µ)

Γ(k)

m = 3 :

M(3, α, β) = (53)

σ3
Γ(−3 + k, σ

β−µ)− Γ(−3 + k, σ
α−µ)

Γ(k)
+

3µσ2
Γ(−2 + k, σ

β−µ) − Γ(−2 + k, σ
α−µ)

Γ(k)

3µ2 σ
Γ(−1 + k, σ

β−µ)− Γ(−1 + k, σ
α−µ)

Γ(k)
+

µ3
Γ(k, σ

β−µ)− Γ(k, σ
α−µ)

Γ(k)

Again, the second way to derive the momenta for (50),
is to use the momentum generating function, which
gives the expression:

M(m,α, β) =

lim
t→0

∂m

∂ tm

∫ β

α
etx

σk

Γ(k)

exp
(
− σ

(x−µ)

)
(x− µ)1+k

dx.
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Here, the series expression for the momentum gene-
rating function again is used:

etx = 1 + tx+
t2x2

2
+
t3x3

6
+
t4x4

24
+O(ttx5).

This leads to:

M(m,α, β) =

lim
t→0

∂m

∂ tm
(· · ·

σk

24Γ[k]

(
−σ−k

(
t4 σ4 Γ

(
−4 + k,

σ

α− µ

)
+

4 t3 (1 + t µ) σ3 Γ

(
−3 + k,

σ

α− µ

)
+

12 t2 σ2 Γ

(
−2 + k,

σ

α− µ

)
+

12 t3 µσ2 Γ

(
−2 + k,

σ

α− µ

)
+

6 t4 µ2 σ2 Γ

(
−2 + k,

σ

α− µ

)
+

24 t σ Γ

(
−1 + k;

σ

α− µ

)
+

24 t2 µσΓ

(
−1 + k,

σ

α− µ

)
+

12 t3 µ2 σ Γ

(
−1 + k,

σ

α− µ

)
+

4 t4 µ3 σ Γ

(
−1 + k,

σ

α− µ

)
+

24 Γ

(
k,

σ

α− µ

)
+ 24 t µΓ

(
k,

σ

α− µ

)
+

12 t2 µ2 Γ

(
k,

σ

α− µ

)
+ 4 t3 µ3 Γ

(
k,

σ

α− µ

)
+

t4 µ4 Γ

(
k,

σ

α− µ

))
+

σ−k
(
t4 σ4 Γ

(
−4 + k,

σ

β − µ

)
+

4 t3 (1 + t µ) σ3 Γ

(
−3 + k,

σ

β − µ

)
+

12 t2 σ2 Γ

(
−2 + k,

σ

β − µ

)
+

12 t3 µσ2 Γ

(
−2 + k,

σ

β − µ

)
+

6 t4 µ2 σ2 Γ

(
−2 + k,

σ

β − µ

)
+

24 t σ Γ

(
−1 + k,

σ

β − µ

)
+

24 t2 µσ Γ

(
−1 + k,

σ

β − µ

)
+

12 t3 µ2 σ Γ

(
−1 + k,

σ

β − µ

)
+

4 t4 µ3 σ Γ

(
−1 + k,

σ

β − µ

)
+

24 Γ

(
k,

σ

β − µ

)
+ 24 t µΓ

(
k,

σ

β − µ

)
+

12 t2 µ2 Γ

(
k,

σ

β − µ

)
+ 4 t3 µ3 Γ

(
k,

σ

β − µ

)
+

t4 µ4 Γ

(
k,

σ

β − µ

))))
Differentiating this expression quite often with resprect to t
and taking the limit t→ 0 of the results, the momenta (51)
to (54) can be found.

Alternatively, the integrals for the momenta can be
taken of the form:

M(0, α, β) =
σk

Γ(k)

∫ β

α

exp
(
− σ

(x−µ)

)
(x− µ)

1+k
dx,

M(1, α, β) =
σk

Γ(k)

∫ β

α

x
exp

(
− σ

(x−µ)

)
(x− µ)

1+k
dx,

M(2, α, β) =
σk

Γ(k)

∫ β

α

x2
exp

(
− σ

(x−µ)

)
(x− µ)

1+k
dx,

M(3, α, β) =
σk

Γ(k)

∫ β

α

x3
exp

(
− σ

(x−µ)

)
(x− µ)

1+k
dx.

In all cases, the substituion x − µ = ζ, dx = dζ leads to
the results (51) to (54).

In these calculations, again the qualitiy gate from [1]
is fulfilled in this case by three independent ways.

4.2 The Cauchy Distribution
In [1] was shown, that:

M(m,−∞,∞) =∫ ∞
−∞

xm
1

(x− µ)2 + σ2
dx =

(1 + (−1)m) · · ·
(

1 + 1
µ

)m
µm σm Γ

(
1
2 −

m
2

)
Γ
(
1
2 + m

2

)
2π

 .

This means

M(0,−∞,∞) = 1,

M(1,−∞,∞) divergent,

M(2,−∞,∞) = − (1 + µ)2 σ2,

M(3,−∞,∞) divergent,

thus only the norm can be used. The second momen-
tum gives a negative value, which is only of formal
interest.
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The second way, using the momentum generating
function yields the result:

M(m,−∞,∞) =

lim
t→0

∂m

∂ tm

[∫ ∞
−∞

et x
1

(x+ µ)2 + σ2
dx
]

= lim
t→0

∂m

∂ tm
.

1

π σ
et µ

−
2π

3
2 G3,13,5

[
t2 σ2

4 ,
1, 34 ,

5
4

1
2 , 1, 1,

3
4 ,

5
4

]
t

 +

1

2
σ (−2 (i π + CosIntegal[t, σ]) sin(t σ)

−2 cos(t σ) (π + 2SinIntegral[t σ]))]

with t < 0. Here G is the Meijer’s G function defined
by ([23])

Gm,np,q

(
x

∣∣∣∣ a1, · · · apb1, · · · bq

)
=

1

2π i

∫ m∏
j=1

Γ (bj − s)
n∏
j=1

Γ (1− aj + s)

q∏
j=m+1

Γ (1− bj + s)
p∏

j=n+1

Γ (aj − s)
xsds

with 0 ≤ m ≤ q, 0 ≤ n ≤ p. By further calculations
can be shown, that most expressions diverge by taking
the limit t→ 0 due to the additional condition t < 0.

Now, finite boundaries for the momenta are con-
sidered. It should be mentioned here, that the way
using the momentum integral

M(m,α, β) =
σ

π

∫ β

α

xm

(x− µ)2 + σ2
dx, (54)

became difficult due to the absence of theorems con-
cerning regularized hypergeometric functions. So the
way, using the binomial theorem has been done. Start-
ing from (54) after the substitution x−µ = z, dx = dz
yields:

M(m,α, β) =
σ

π

∫ β−µ

α−µ

(z + µ)m

z2 + σ2
dz.

The the application of the binomial theorem leads to

M(m,α, β) =
σ

π

m∑
j=0

µm−j
(
m

j

)∫ β−µ

α−µ

zj

z2 + σ2
dz.

Solving the integral leads to

M(m,α, β) =
m∑
j=0

1

π
µm−j σ

(
m

j

)[
· · ·

−
(α− µ)1+j

2F1(1, 1+j
2 , 3+j

2 , − (α−µ)2

σ2 )

(1 + j)σ2
+

(β − µ)1+j
2F1(1, 1+j

2 , 3+j
2 ,− (β−µ)2

σ2 )

(1 + j)σ2

]
From this follows

M(0, α, β) =

− arctan
(α−µ

σ

)
+ arctan

(
β−µ
σ

)
π

, (55)

M(1, α, β) =

2µ
(

arctan
(
β−µ
σ

)
− arctan

(α−µ
σ

))
2π

+ (56)

σ

(
ln

(
1 +

(
β−µ
σ

)2
)
− ln

(
1 +

(α−µ
σ

)2))
2π

,

M(2, α, β) =
µ2 − σ2

π
· · ·(

arctan

(
β − µ
σ

)
− arctan

(
α− µ
σ

))
+

σ

π

(
β − α+ µ ln

(
1 +

(
β − µ
σ

)2
)
− (57)

µ ln

(
1 +

(
α− µ
σ

)2
))

.

M(3, α, β) =
µ3 − 3µσ2

π
· · ·(

arctan

(
β − µ
σ

)
− arctan

(
α− µ
σ

))
+

σ

2π
((β − α)(α+ β + 4µ)+ (58)

(3µ2 − σ2) ln

(
1 +

(
β − µ
σ

)2
)
−

(3µ2 − σ2) ln

(
1 +

(
α− µ
σ

)2
))

.

In the following, the calculation of the momenta is
discussed, using the momentum generating function.
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Here the direct way of integrating the product of gen-
erating function and Cauchy distribution and after-
wards differentiating with respect to t, is not used.
Due to the fact, that the integration is with respect to
the variable x, integration and differentiation can be
swapped. So the first step is to calculate the first three
derivatives with respect to t:

M(m,α, β) =

∫ β

α

σ

π
etx

1

(x− µ)2 + σ2
dx,

∂

∂t
M(m,α, β) =

∫ β

α

σ

π

xetx

(x− µ)2 + σ2
dx,

∂2

∂t2
M(m,α, β) =

∫ β

α

σ

π

x2etx

(x− µ)2 + σ2
dx,

∂3

∂t3
M(m,α, β) =

∫ β

α

σ

π

x3etx

(x− µ)2 + σ2
dx.

Taking the limit of these expressions and evaluating
the integrals, the momenta (55) to (58) can be found.

In this section, two ways have been presented in
order to calculate the momenta for finite boundaries
for the Cauchy distribution and to fulfill the quality
gate.

5 Conclusion
In this publication, the introduction of momenta in fi-
nite boundaries is motivated by using examples from
heat conduction, from the approximation of the bino-
mial distribution, by comparing theoretical investiga-
tions to measured data and from anomalous diffusion.
The last two features are discussed in a forthcomming
paper in more detail.

The definition of momenta is given and the vari-
ance theorem for finite boundaries is formulated.
These results then are applied to the Gaussian distri-
bution for heat conducting processes, for the binomial
distribution of diffusion, for two variants of the Lévy
distribution and the Cauchy one. In order to fulfill the
quality gate, introduced in [1], the concept of momen-
tum generating functions is extended to finite bound-
aries, too.

It can be shown at two different ways, that in the
case of infinite boundaries the momenta for the con-
sidered distribution functions do not exist. In contrast
to this, the momenta can be calculated in finite bound-
aries on two different ways, too. This shows, that the
momenta exsist, and the extended formulation of mo-
menta and the variance theorem are useful.
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